
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYPERINF: UNLEASHING THE HYPERPOWER OF
SCHULZ’S METHOD FOR DATA INFLUENCE
ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Influence functions provide a principled method to assess the contribution of in-
dividual training samples to a specific target. Yet, their high computational costs
limit their applications on large-scale models and datasets. Existing methods pro-
posed for influence function approximation have significantly reduced the compu-
tational overheads. However, they mostly suffer from inaccurate estimation due
to the lack of strong convergence guarantees from the algorithm. The family of
hyperpower methods1 are well-known for their rigorous convergence guarantees
on matrix inverse approximation, while the matrix multiplication operation can
involve intractable memory and computation costs on large-scale models. We
propose HYPERINF, an efficient and accurate influence function approximation
method which leverages the hyperpower method, specifically Schulz’s iterative
algorithm. To deal with the computation-intensive matrix multiplication, we in-
corporate the generalized fisher information (GFIM) as a low-rank approximation
of the Hessian matrix, which reduces the memory and computation overheads to
constant costs independent of ranks on LoRA-tuned models. We first demon-
strate the superior accuracy and stability of HYPERINF compared to other base-
lines through a synthetic convergence simulation for matrix inversion. We fur-
ther validate the efficacy of HYPERINF through extensive real-world data attri-
bution tasks, including mislabeled data detection and data selection for LLM and
VLM fine-tuning. On LoRA-tuned models, HYPERINF achieves superior down-
stream performance with minimal memory and computational overhead, while
other baselines suffer from significant degradation. Our codebase is available at
https://anonymous.4open.science/r/HyperINF-B702.

1 INTRODUCTION

Large foundation models have demonstrated remarkable capabilities on a great variety of tasks
across language, vision and audio modalities (Touvron et al., 2023; Liu et al., 2023a; OpenAI et al.,
2024; Bai et al., 2023). Recently, extensive data-centric studies illustrate that training data plays
an essential role in the model’s downstream performance (Hoffmann et al., 2022; Gao et al., 2020;
Penedo et al., 2023; Wang et al., 2018; Gunasekar et al., 2023; Lee et al., 2023; Longpre et al.,
2023b). Therefore, the community calls for an efficient and effective data attribution method which
identifies the most beneficial training samples without introducing large computation overheads on
large-scale models and data pools. As one of the most principled data attribution methods, influ-
ence function quantifies the impact of each training sample on model’s prediction on a validation
set (Hampel, 1974; Koh & Liang, 2020). Despite the efficacy of influence function and its vari-
ants (Kwon et al., 2024; Koh & Liang, 2020; Pruthi et al., 2020; Guo et al., 2021; Wang et al.,
2019b; Kong et al., 2021), the Hessian inverse operation involved in the formulation introduces
intractable memory and computation costs, which hinders its wide application on large models.

To mitigate the computation overheads, a series of methods are proposed to estimate the values
of influence function with lower costs. Agarwal et al. (2017) proposed LISSA, which iteratively
estimates the value of the Hessian-vector product. However, the convergence of the algorithm is not
guaranteed, which could largely diverge from the correct value after several iterations. Recently,
Kwon et al. (2024) introduced DATAINF as a closed-form approximation of the Hessian matrix,

1A hyperpower method is defined as a function Φ(A,X) on matrices A and X , where A−1 is the targeted
matrix inverse (Petković, 1995).

1

https://anonymous.4open.science/r/HyperINF-B702

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Complexity Comparison between Exact (Gaussian Elimination), LiSSA, DataInf and Hy-
perINF. Computational and memory complexities are obtained on a LoRA-tuned model with di-
mension d ∈ N and rank r ∈ N. Assume the dimension of the LoRA matrices is identical across L
different layers.

Complexity Exact (Gaussian Elimination) LiSSA DataInf HyperINF w. GFIM HyperINF w. FIM

H−1 Computation O(r2d2L+ r3d3L) - O(rdL) O(d3L) O(r3d3L)

H−1g Computation O(r2d2L+ r3d3L) O(r2d2L) O(rdL+ r2d2L) O(d3L+ rd2L) O(r3d3L+ r2d2L)

Memory O(r2d2) O(r2d2) O(rd) O(d2) O(r2d2)

which further reduces the complexity. However, the error bound of the method is quadratic to the
scale of the matrix Kwon et al. (2024), which is vulnerable to downstream performance degradation.

To further improve the accuracy of hessian-inverse estimation, the hyperpower method is consid-
ered a promising alternative with rigorous convergence guarantees (Garnett et al., 1971; Behera
et al., 2024). However, the hyperpower method iteratively applies matrix multiplication operation,
which introduces intractable memory and computation costs, especially on large-scale networks.
To improve the influence function estimation accuracy within tractable computations, we thereby
introduce HYPERINF as a novel approximation method by incorporating the hyperpower method,
specifically Schulz’s iterative algorithm (Petković, 1995). To address the costs from matrix multi-
plication, we use the generalized fisher information matrix (GFIM) (Hu & Li, 2024) as a low-rank
approximation of the Hessian matrix, with a theoretical proof. Specifically, on LoRA-tuned models,
the memory and computational costs are reduced to a constant value which is independent of the
LoRA ranks. We show that HYPERINF with GFIM demonstrates superior accuracy benefit from
rigorous convergence guarantee while incurring low computational overheads compared to other
baseline methods. From extensive experiments on LLM and VLM, HYPERINF can effectively iden-
tify the most helpful and mislabelled data points, which improves the data attribution interpretability
and finetuning efficiency.

Our Contributions. We summarize our main contributions as follows:

• We leverage the generalized fisher information matrix (GFIM) to derive a novel low-rank
formulation of influence function Equation 5, which largely improve the efficiency of in-
fluence function computations on large-scale models;

• We demonstrate that the Schulz’s method (Equation 7) significantly improves stability and
accuracy of the approximation of hessian inversion, which further yields more accurate
influence scores for large-scale data attribution;

• We propose HYPERINF as an accurate and efficient influence functions approximation
method by applying GFIM and the Schulz’s method. We further verify the empirical effi-
ciency and effectiveness of HYPERINF across a range of extensive experiments, including
mislabeled data detection (§ 4), data selection for LLM fine-tuning (§ 5.2), and instruct-
tuning data selection for VLM pretraining (§ 5.3).

2 PRELIMINARIES

We first revisit the influence function formulation with two existing approximation methods LISSA
and DATAINF.

Setup. The data attribution problem aims to assess each data point in the training set Dtrain =
{(xi, yi)}ni=1 according to their impact to the model’s performance on a targeted validation set
Dval = {(xval

i , yval
i)}mi=1. Given a model f parameterized by θ, the loss function on the ith

sample {(xi, yi)} is denoted as ℓ(yi, fθ(xi)). We assume the loss function is differentiable and
strongly convex, the gradient on the ith sample can be represented as ∇θℓi := ∇θℓ(yi, fθ(xi))
with respect to θ. The empirical risk minimizer on the entire training set is denoted as θ⋆ =
argminθ∈Θ

1
n

∑n
i=1 ℓ(yi, fθ(xi)).

Influence Functions. The influence function quantifies how fast the model parameters would
change corresponding to the up-weight of a specific data point. Following Koh & Liang (2020),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 10 20 30 40
Iteration

0

1000

2000

3000

4000

5000

6000

Er
ro

r

HyperINF N=200
dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

0

1000

2000

3000

4000

5000

HyperINF N=800

0 10 20 30 40
Iteration

0

50

100

150

200

250

HyperINF N=6400

0 10 20 30 40
Iteration

0

20

40

60

80

100

HyperINF N=12800

0 5 10 15 20 25
Iteration

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

LiSSA N=200

dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

103

106

109

1012

1015

1018

LiSSA N=800

0 10 20 30 40
Iteration

10 3

100

103

106

109

1012

LiSSA N=6400

0 10 20 30 40
Iteration

10 4

10 2

100

102

104

106

LiSSA N=12800

1000 2000 3000 4000
Dimension d

1300

1325

1350

1375

1400

1425

1450

Er
ro

r

DataInf N=200

1000 2000 3000 4000
Dimension d

2200

2300

2400

2500

2600

2700

2800

DataInf N=800

1000 2000 3000 4000
Dimension d

2500
3000
3500
4000
4500
5000
5500
6000

DataInf N=6400

1000 2000 3000 4000
Dimension d

2500
3000
3500
4000
4500
5000
5500
6000
6500 DataInf N=12800

Figure 1: Convergence test of HYPERINF, LISSA and DATAINF. We construct M =
1
N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate the inverse hessian-vector prod-

uct M−1v, where si ∈ Rd, v ∈ Rd are randomly generated from standard normal distribution. Only
HYPERINF can converge to a low error rate with increasing matrix dimension and sample size while
the approximation error from LISSA and DATAINF significantly diverge from the target values. For
LISSA, it does converge but only in limited circumstances (e.g. when N is large). We include the
results with other distributions in Appendix H.

given an infinitesimally small ϵ > 0, we upweigh the contribution of the kth datapoint (xk, yk)
by increasing its portion in the loss function: θ(k)(ϵ) := argminθ∈Θ

1
n

∑n
i=1 ℓ (yi, fθ(xi)) +

ϵℓ (yk, fθ(xk)). Assume the loss function ℓ(y, fθ(x)) is twice-differentiable and strongly convex in
θ, the influence of the kth data sample (xk, yk) ∈ Dtrain on θ⋆ is defined as the derivative of θ(k)(ϵ)
at ε = 0:

Iθ⋆ (xk, yk) :=
dθ(k)

dε

∣∣∣∣
ε=0

= −H (θ⋆)
−1∇θℓk (1)

where H(θ) := ∇2
θ

(
1
n

∑n
i=1 ℓ(yi, fθ(xi))

)
is the Hessian matrix of the empirical loss computed

on the flattened gradient vectors (Koh & Liang, 2020; Kwon et al., 2024).

We further score the contribution from each training sample according to model’s performance on
the validation set Dval. For simplicity, we define I (xk, yk) := −v⊤H(θ⋆)−1∇θℓk as the influence
from the kth datapoint (xk, yk) ∈ Dtrain on Dval, where v = 1

m

∑m
i=1∇θℓ(y

val
i , fθ(x

val
i))|θ=θ⋆ ,

representing the gradient on the validation set, the datapoints assigned with largest negative values2

of influence function would lead to the sharpest drop of validation losses, which contribute the most
to the training process. In contrast, the datapoints with largest positive values could be the toxic
samples which sabotage the model training.

LISSA. Agarwal et al. (2017) proposed an iterative method to compute the inverse Hessian vector
product H(θ⋆)−1v. For v0 = v, LISSA recursively computes the following iteration: vj = v +
(I − H(θ⋆))vj−1. Agarwal et al. (2017) proved that vj converges to H(θ⋆)−1v as j increases,
when H(θ⋆) ⪯ I . In practice, it is often assumed that LISSA converges to H(θ⋆)−1v after several
reasonable numbers of iterations, and applies the approximation vj ≈ H(θ⋆)−1v to compute the
influence function I (xk, yk) = −v⊤

j ∇θℓk. However, some works have shown that the stability and
convergence from the iterative update are questionable (Basu et al., 2021; Ko et al., 2024).

2We refer largest negative values here as negative scores with the largest absolute value.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

DATAINF. Kwon et al. (2024) proposed a closed-form approximation of the Hessian inverse,
which greatly improves the computation efficiency. Firstly, following George et al. (2021), when
applying the negative log-likelihood loss function ℓ(y, fθ(x)) = − log p(y|fθ(x)), the second-order
Hessian is equivalent to the Fisher Information Matrix (FIM) in expectation (Bartlett, 1953), which
only involves first-order computations. Consequently, Kwon et al. (2024) approximate the Hessian
inverse leveraging the Sherman-Morrison formula 3:

H (θ)
−1 ≈ 1

nλ

n∑
i=1

(
Id −

∇θℓi∇θℓ
⊤
i

λ+∇θℓ⊤i ∇θℓi

)
(2)

where G(θ) := 1
n

∑n
i=1∇θℓi∇θℓ

⊤
i stands for the Fisher Information Matrix (FIM). While the com-

putation complexity of Equation 24 is reduced to O(d), in compromise, the reverse-order operation
Equation 23 incurs aO(d2) error (Kwon et al., 2024). When applying to large-scale models, it could
risk a large approximation error.

3 HYPERINF: EFFICIENT AND ACCURATE DATA INFLUENCE
APPROXIMATION VIA THE HYPERPOWER METHOD

We introduce HYPERINF as an accurate yet efficient approximation method for influence function,
which leverages generalized Fisher Information Matrix (GFIM) proposed by Yang et al. (2022)
and Hu & Li (2024), and Schulz’s hyperpower method (Petković, 1995). We begin by providing
a theoretical proof of Hessian matrix approximation for large models using GFIM, followed by a
demonstration of Schulz’s iteration for approximation of the matrix inverse.

3.1 LARGE-SCALE HESSIAN APPROXIMATION USING GENERALIZED FISHER INFORMATION

The second-order gradients often incur intensive computations and instability on large-scale net-
works. Therefore, we conduct several approximations on Hessian matrix when applying Equation 1
on LoRA-tuned models.

Block-wise Diagonal Approximation. In deep transformer-structured networks, the Hessian ma-
trix is observed to be approximately block-wise diagonal according to (Zhang et al., 2024a;b). We,
therefore, apply a block-wise diagonal approximation on the Hessian inverse in Equation 1. Given
a neural network as a compositional function fθ(x) = fθL

◦ · · · ◦ fθ1
(x) where for l ∈ [L],

we compute the hessian inverse on each parameter block which yields a sparse estimation as
diag(H1(θ)

−1, . . . ,HL(θ)
−1) (Grosse et al., 2023b).

Connection between Generalized Fisher Information and Hessian Matrix. Suppose that we
train the model to minimize the negative log-likelihood objective: ℓ(y, fθ(x)) = − log p(y | fθ(x))
for all (x, y) ∈ X ×Y , where p(·) is the probability density function and X ,Y are input and output
space, respectively. According to Bartlett’s second identity (Bartlett, 1953), the second momentum
of first-order gradient (i.e. Fisher Information Matrix) is equivalent to the second-order gradient
matrix (Hessian) in expectation:

EX,Y∼p(X),p(Y |fθ(X)

[
∇2

θℓ(Y, fθ(X))
]

(3)

= EX,Y∼p(X),p(Y |fθ(X)

[
∇θℓ(Y, fθ(X)) (∇θℓ(Y, fθ(X)))

⊤
]
.

Since Equation 3 replaces the second-order gradient with stable and tractable first-order gradients,
the Fisher Information Matrix (FIM) is widely adopted as a valid approximation of Hessian matrix
in deep networks (Grosse et al., 2023a; Kwon et al., 2024; Barshan et al., 2020). We further extend
the Generalized Fisher Information Matrix (GFIM) (Hu & Li, 2024) to yield a low-rank formulation
of influence function. With some idealized assumptions, we claim the Lemma 3.1 following the
insights from Yang et al. (2022) and Hu & Li (2024).
Lemma 3.1. Given the matrix-form gradient on a parameter block θ as g = g(θ;x, y) ∈ Rd×r,
which can be flattened to a vector by vec(g) ∈ R1×rd. Let ⊗ denotes the Kronecker product, Ir
denotes r × r identity matrix. Assume that each column of the sample gradient g = g(θ;x, y) ∈
Rd×r is independent and identically distributed random vector with zero mean under the distribution
p(y | x,θ) for any θ. We have:

E
[
vec(g) vec(g)⊤

]
= E

[
Ir ⊗

(
1

r
gg⊤

)]
.

3For simplicity, we denote ℓi := ℓ (yi, fθ(xi))

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In addition (Equation 3), it holds:

E

[
Ir ⊗

1

r
gg⊤

]
= E[H(vec(θ))].

Following Lemma Theorem 3.1, we further estimate a hessian-gradient product using GFIM, cor-
responding to the (H(θ⋆)−1∇θℓk) term in Equation 1. Given an invertible matrix A, we have
(Ir ⊗ A)−1 = Ir ⊗ A−1. Therefore, denote the GFIM matrix as G(θ) ≜ (gg⊤) ∈ Rd×d for any
matrix v ∈ Rd×r, it holds that:

H(vec(θ))−1vec(v) ≈
[
Ir ⊗ (

1

r
gg⊤)−1

]
vec(v) = vec(G(θ)−1v). (4)

Consider a LoRA-tuned model with LoRA dimension d and rank r. We assume that each column
in one LoRA block ∆W ∈ Rd×r, corresponding to each rank, is i.i.d. distributed with zero mean.
In the ideal case that the model is trained to converge with E(−∇θ log p(y|x,θ)) = 0, the zero-
mean assumption on the columns of gradient matrices could stand. Thus, we apply Equation 4 to
approximate the original Hessian-gradient product. To further guarantee that G(θ) is invertible, we
add a damping factor λId to the GFIM matrix following Martens (2010).

We eliminate the constant in Equation 4 then derive the final formula of HYPERINF influence score.
On a specific datapoint {xk, yk} ∈ Dtrain, denote the unflattened gradient on a parameter block θ as
gk(θ), we compute:

IHYPERINF (xk, yk) := −g⊤
v (G(θ⋆) + λId)

−1gk(θ), (5)

where gv =
1

m

m∑
i=1

∇θℓ(y
val
i , fθ(x

val
i))|θ=θ⋆ ∈ Rd×r, representing the average unflattened gradi-

ent on θ on the validation set.

3.2 MATRIX INVERSE APPROXIMATION WITH SCHULZ’S METHOD

Schulz’s method (Petković, 1995). To compute the inverse of one matrix A, the hyperpower
iterative family of matrix iteration methods has attracted the attention of many researchers due to its
rigorous convergence guarantee (Altman, 1960; Garnett III et al., 1971; Bazán & Boos, 2018):

Xt+1 = Xt(I + Tt + T 2
t + ...+ T p−1

t), Tt = I −AXt (6)

The iterative approach requires p matrix-matrix multiplications per iteration and has an order of
convergence p (Bazán & Boos, 2018). When choosing p = 2, it yields the Schulz iteration, which
can also regarded as a by-product of the Newton method applied to the non-linear equation f(X) =
A−X−1:

Xt+1 = Xt +XtYt, Yt = I −AXt (7)

It is proved by Ben-Israel & Cohen (1966) and Petković (1995) that with a proper initialization,
Schulz’s method would converge to A−1 in the order of convergence at least p = 2. We provide
the complete proof of convergence in Appendix C. Compared to other conventional matrix inverse
algorithms (e.g. gaussian elimination, conjugate gradient, GMRES), Schulz’s method demonstrates
superior accuracy in terms of error rate and significant efficiency gains from the GPU acceleration
on matrix multiplications. We include more details in Appendix G. With the convergence test on
matrix inversion (section 4), we show that starting from a small identity matrix or random gaussian
initialization, Equation 7 could converge to a desirable error rate in finite steps (t¡20). We provide
the pseudo-code in Algorithm 1.

Summary. We hereby provide the holistic view of the HYPERINF algorithm for influence func-
tion estimation. Firstly, we compute the generalized fisher information G(θ) on all tunable pa-
rameter blocks (LoRA blocks on LoRA-tuned models); Secondly, we compute the inverse of the
damped GFIM (G(θ) + λId) with Schulz’s iterations (Equation 7); Last, we compute the influence
score with cached validation gradient v and the unflattened gradient on each training sample, i.e.
IHYPERINF (xk, yk) (Equation 5). We provide the detailed pseudo-code in the Appendix (Algo. 2).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Complexity Analysis. Compared to the original influence function formulation in Equation 1, the
generalized fisher information matrix G(θ⋆) ∈ Rd×d reduces the memory complexity from O(r2d2)
to O(d2). On computation complexity of Hessian-gradient product, the matrix multiplication be-
tween (G(θ⋆) + λId)

−1 ∈ Rd×d and gk ∈ Rd×r only requires O(rd2) FLOPS, instead of O(r2d2)
with flattened gradient vectors. Specifically, with LoRA rank r = 16, HYPERINF only requires
0.39% memory complexity and 6.25% computations comparing to original Hessian-vector product
operations. We include the complexity comparison to other existing approximation methods in Ta-
ble 1, where HYPERINF with GFIM showcases outstanding memory and computation efficiencies.
In addition, we report the time costs for Hessian inverse-vector product in subsection D.1, where
HYPERINF demonstrates superior efficiency on GPU. It underscores the superior compatibility of
HYPERINF with modern GPU computations.

Algorithm 1 Matrix Inverse Approximation via Schulz’s Iterations

Require: A matrix A needed to be computed for its inverse, an initial guess X0 ≈ A−1, a maximum
iteration number Niter.
for t ∈ [Niter] do

Iteratively update Xt = Xt−1(2I −AXt−1)
end for
return The final approximation A−1 ← XNiter

4 SYNTHETIC CONVERGENCE TEST OF MATRIX INVERSE APPROXIMATION

Setup. We first examine the accuracy and stability of Schulz’s algorithm on matrix inverse ap-
proximation by a convergence test. Specifically, to simulate the FIM matrix in the influence function
A = (G(θ⋆) + λId) on a training set with scale |Dtrain| = N and model with number of parameters
as d, we construct M = 1

N

∑N
i=1 sis

⊤
i + λI ∈ Rd×d by randomly generating si ∈ Rd. We then

compute the exact value of M−1 ∈ Rd×d and the approximated value M̃−1 using DATAINF and
Schulz’s algorithm. For LISSA, since it directly approximates the inverted matrix-vector product,
we randomly generate another vector v ∈ Rd and compute the exact value of the matrix-vector prod-
uct Q = M−1v ∈ Rd as the target. We denote the approximated value from LISSA as Q̃. For all the
methods, we measure the error as the Frobenius norm of the matrix ∥Q− Q̃∥F , where Q̃=M̃−1v for
DATAINF and HYPERINF. We run the convergence test across various d ∈ {512, 1024, 2048, 4096}
and N ∈ {200, 800, 6400, 12800}, emulating different scales of model and amount of data samples
respectively. In all settings, the dampling factor λ is set as 0.01. The initialization for iterative
methods is set as X0 = 5e−4Id. We provide more results with matrices from various distributions
in Appendix H, which demonstrates the similar pattern as in Figure 1.

HYPERINF solves matrix-inversion approximation with great convergence performance. We
present the results from the synthetic experiments in Figure 1, where HYPERINF with Schulz’s
algorithm demonstrates a remarkable accuracy and stability compared to the other two methods.
Specifically, on high-dimensional matrices M with large d, both LISSA and DATAINF tend to di-
verge with increasing approximation errors. For LISSA, the error would not converge but explode
exponentially according to the number of iterations. Even when applying on a small dimension
of matrix with N = 200, LISSA is not able to give an accurate approximation with a large error
rate ∼ 105. This might comes from the sensitivity of LISSA algorithm to the initialization condi-
tions, which could be hard to tune when apply on large-scale models. In comparison, HYPERINF
with Schulz’s algorithm could always converge to a low error rate within finite iterations across all
scales of d and N . It implies that our proposed HYPERINF could consistently achieve a satisfying
accuracy on large-scale models and datasets, while both LISSA and DATAINF could significantly
diverge from the exact value.

5 INFLUENCE FUNCTION APPROXIMATION ON LARGE-SCALE MODELS

In this section, we further apply HYPERINF on influence function approximation on large-scale
foundation models and demonstrate its effectiveness on various data attribution tasks. We compare
HYPERINF with two existing baseline methods LISSA (Agarwal et al., 2017) and DATAINF (Kwon
et al., 2024), as well as the Hessian-free method TRACIN, which replaces the second-order term
H−1 in Equation 1 with the identity matrix Id (Pruthi et al., 2020). Across all mislabeled data

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
0

20

40

60

80

100

De
te

ct
io

n
Ra

te
 rt

(%
)

COLA

HyperINF
TracIN
DataInf
LiSSA
Random
Oracle

0 20 40 60 80 100
0

20

40

60

80

100
MRPC

0 20 40 60 80 100
0

20

40

60

80

100
QNLI

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100

De
te

ct
io

n
Ra

te
 rt

(%
)

QQP

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100
RTE

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100
SST2

Figure 2: Mislabeled Data Detection across the GLUE Benchmark with rank r = 16 for
rsLoRA finetuning. HYPERINF significantly improve the detection rate (rt) according to the in-
spection rate (p) above all baselines, while LISSA performs barely better than the random guess.
The dotted lines denote the detection rates from Random Guess and Oracle, which is the best pos-
sible accuracy at each inspection rate. For each method, we run the experiments with 3 random
seeds and report the detection rate with 95% confidence intervals.

detection, data selection for LLM fintuning and VLM pretraining, HYPERINF shows promising
performance compared to all baseline methods.
5.1 MISLABELED DATA DETECTION

We first apply HYPERINF on the mislabeled data detection task following (Koh & Liang, 2020;
Yang et al., 2024; Kwon et al., 2024). We construct a corrupted dataset by flipping the label of 20%
randomly sampled data points, which is considered as the mislabeled subset. After fine-tuning the
model on the corrupted training dataset, we rank all data points according to their influence scores
from HYPERINF, LISSA and DATAINF respectively and then identify the top-p% samples with the
highest scores as the mislabeled ones. We define p as the inspection rate. Denote the real mislabeled
subset as Dmis and the identified top-p% percentage subset using influence function as D̃(p), the
detection ratio rt(p) can then be measured as the recall between Dmis and D̃(p):

rt(p) =
|Dmis ∩ D̃(p)|
|Dmis|

∈ [0,min(p/20, 1.0)] (8)

We assess the mislabeled data detection accuracy according to the detection ratio rt with respect
to the inspection rate p. We run the experiments across six tasks in the GLUE benchmark (Wang
et al., 2019a) with the Roberta-large model. We finetune the pretrained Roberta-large
checkpoint on each corrupted training set using rsLoRA (Kalajdzievski, 2023), a rank-stabilized
variant of LoRA (Hu et al., 2021). We provide more implementation details, ablations with various
LoRA ranks r and complexity analysis in Appendix D.

Results. According to Figure 2, HYPERINF outperforms all baselines on 5 out of 6 tasks with
better accuracy and less variance. On SST2, the accuracy of HYPERINF is comparable to DATAINF
and TRACIN method while the variance is largely reduced when applying HYPERINF. In contrast,
we find that LISSA does not perform well on the mislabeled data detection task: on most of the
tasks, the rt-p curve approaches linear or horizontal, which indicates LISSA is barely better than
the random guess in identifying toxic data points. Additionally, with the low-rank formulation from
GFIM, HYPERINF achieves a remarkable efficiency comparable to all the other baselines using
GPU computing (subsection D.1).

Comparison between HYPERINF with GFIM and FIM. It is worth noting that HYPERINF
with GFIM does not lead to performance degradation compared to FIM. According to Figure 5, HY-
PERINF with GFIM could consistently achieve comparable or better performance than HYPERINF
with FIM, while being (1/r)3 more efficient in computation and (1/r)2 in memory (Table 1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 DATA SELECTION FOR LLM FINETUNING

We further manifest the effectiveness of HYPERINF on data selection tasks for LLM finetuning
(Pruthi et al., 2020; Kwon et al., 2024; Xia et al., 2024; Albalak et al., 2024). Given a downstream
task, we aim to select the high-quality and most relevant data points from the training set which
yields a better accuracy on the held-out test set. Specifically, we fine-tune a pretrained Llama2-7B4

checkpoint (Touvron et al., 2023) on four reasoning tasks: QASC (Khot et al., 2020), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020) and LogiQA (Liu et al., 2020). We consider both
sparse (LoRA) and dense finetuning strategies. When applying LoRA, we start with a warmup run
on the training set for 1 epoch to prevent using gradients from randomly initialized LoRA modules.
We apply LoRA with rank r = 64. We compute influence scores from HYPERINF, DATAINF,
LISSA and TRACIN and select the top-k% (k = 5, 20) datapoints with the lowest (i.e. largest neg-
ative) scores respectively. We continually train the model after warmup run using the selected data
points. For dense finetuning, we use the gradients from the last transformer block to compute influ-
ence scores, which is observed to be the most influential layer within the autoregressive language
model architecture (Men et al., 2024). We report the accuracy of the finetuned model evaluated on
the held-out test set. We include more implementation details in Appendix E. The model is tuned
for N = 5 (resp. N = 3) epochs on LoRA (resp. dense) finetuning. We also compare to training
the model on the full dataset for N = 1 epoch.

Results on LoRA finetuning. According to Table 2, HYPERINF achieves the best performance
comparing to other baselines. Notably, with 5% finetuning datapoints selected by HYPERINF, the
reasoning accuracy outperforms the train with the full dataset, which requires 20× data samples and
4× FLOPs. With 20% HYPERINF-selected data points, HYPERINF greatly improves the accuracy
by 2.0% above the random selection baseline.

Results on dense finetuning. Although the theoretical analysis in Theorem 3.1 is inspired by LoRA
finetuning context, we show that data selection by HYPERINF also significantly benefits dense fine-
tuning. According to Table 3, with 5%, 20%, 40% selected data points, HYPERINF consistently
improves the reasoning accuracy across all tasks above the random baseline. In contrast, all three
baselines could lead to degradation when selecting a small portion of data points (5, 20%). Com-
pared to training on the full dataset (1 epoch), using 40% HYPERINF-selected samples improves
the average accuracy by 12.9%, which also performs other baselines by a large margin.

Table 2: Evaluation accuracies (%) for LLM data selection with LoRA finetuning. The best re-
sults are Bolded and the second-best are Underlined. On average, HYPERINF shows the larger
improvements as k increases and performs better than all other baselines. The ↑ (↓) indicates the
improvement (degradation) compared to the Random baseline.

Method (LoRA) (k%) Random DATAINF LISSA TRACIN HYPERINF

5% 14.0 12.7 10.6 12 12.9
QASC 20% 16.2 18.7 16.7 16.3 19.7

100% 14.1 - - - -

5% 89.4 88.9 88.5 88.5 89.6
HellaSwag 20% 88.7 89.8 89.5 89.3 89.7

100% 91.7 - - - -

5% 51.3 53.7 52.9 52.9 54.1
PIQA 20% 52.6 52.7 55.6 54.8 56.0

100% 50.6 - - - -

5% 27.0 28.7 25.4 24.8 28.0
LogiQA 20% 26.8 27.0 25.6 27.0 27.0

100% 27.6 - - - -

5% 45.4 46.0(0.6↑) 44.4(1.0↓) 44.6(0.8↓) 46.2(0.8↑)
Average 20% 46.1 47.1(1.0↑) 46.9(0.8↑) 46.9(0.8↑) 48.1(2.0↑)

100% 46.0 - - - -

4https://huggingface.co/meta-llama/Llama-2-7b-hf

8

https://huggingface.co/meta-llama/Llama-2-7b-hf

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.3 DATA SELECTION FOR VLM PRETRAINING

Inspired by the promising performance of HYPERINF on large-scale models and datasets, we further
consider to apply it on multimodal instruct-tuning data selection for Vision-Language Model (VLM)
pretraining (Liu et al., 2023c; Bai et al., 2023; Chen et al., 2023; Karamcheti et al., 2024).

Following LLaVa (Liu et al., 2023c), we adopt the commonly used VLM architecture which con-
sists of three components: a vision backbone Vϕ, a projector Fψ and a language backbone LMθ.
Both the vision and language backbones are pre-trained, while the projector is randomly initial-
ized. We follow the auto-regressive training paradigm of vision-language models using multimodal
instruct-tuning datasets represented as (ximg,xtext) ∈ Dvlm. In our experiments, we apply CLIP
ViT-Large (Radford et al., 2021) with a patch size of 14 and input resolution of 336px as the
vision backbone and Llama2-7B (Touvron et al., 2023) as the language backbone. For the projec-
tor Fψ , we initialize a two-layer GELU-MLP (Hendrycks & Gimpel, 2023). Along the suggested
setting from Karamcheti et al. (2024), we freeze the vision backbone Vϕ throughout the entire train-
ing process while only tuning the projector Fψ and the language backbone LMθ. We provide more
implementation details in Appendix F.1.

Setup. We adopt the two-phase pretraining scheme following LLaVa (Liu et al., 2023c). In the
alignment phase, we tune the projector Fψ and LoRA modules of the language backbone on a
separate alignment dataset (Karamcheti et al., 2024). For the second instruct-tuning phase, we select
the most influential data samples from a large generic multimodal instruct-tuning dataset consisting
of 665K datapoints (Karamcheti et al., 2024). We compute the influence score utilizing the gradients
from the projector and LoRA modules then select the top-k% (k = 5%, 20%) subset with the lowest
(i.e. largest negative) scores. We train the VLM on the selected instruct-tuning subsets for one
epoch and evaluate the model’s performance on four cross-modal reasoning tasks: VQAv2 (Goyal
et al., 2017), GQA (Hudson & Manning, 2019), POPE (Li et al., 2023) and Text-VQA (Singh et al.,
2019). We provide more details on the dataset and implementation in Appendix F.2 and F.3.

Results. We present the downstream accuracies across four reasoning tasks in Table 4. On aver-
age, HYPERINF consistently outperforms all the other data selection methods and achieves a 2.3%
improvement above the random baseline with 20% selected subset. In contrast, with 5% selected
data points, LISSA shows a large (8%) performance degradation because of the lack of accurate
second-order information.
Table 3: Evaluation accuracies (%) for LLM data selection with dense finetuning. The best results
are Bolded and the second-best are Underlined. On average, HYPERINF could outperform the
Random baseline while the other methods fail when the selection ratio k is small. The ↑ (↓) indicates
the improvement (degradation) compared to the Random baseline.

Method (dense) (k%) Random DATAINF LISSA TRACIN HYPERINF

5% 11.3 12.5 11.2 11.4 14.3
QASC 20% 13.3 22.2 11.7 11.0 15.0

40% 18.1 35.6 13.2 40.1 56.1
100% 11.9 - - - -

5% 71.5 70.8 70.6 72.5 81.3
HellaSwag 20% 84.7 82.8 83.8 82.6 83.2

40% 86.0 87.8 89.0 88.9 87.0
100% 92.4 - - - -

5% 46.5 42.3 48.7 47.8 53.2
PIQA 20% 53.2 55.0 52.8 57.3 57.0

40% 55.0 60.8 60.9 57.1 58.0
100% 51.0 - - - -

5% 25.5 25.0 27.2 25.4 28.3
LogiQA 20% 28.6 22.3 26.4 27.4 30.2

40% 30.6 28.2 34.3 33.2 40.1
100% 27.0 - - - -

5% 38.7 37.6(1.1↓) 39.4(0.7↑) 39.3(0.6↑) 44.3(5.6↑)
Average 20% 44.9 45.6(0.7↑) 43.7(1.2↓) 44.6(0.3↓) 46.4(1.5↑)

40% 47.4 53.1(5.7↑) 49.4(2.0↑) 54.8(7.4↑) 60.3(12.9↑)
100% 45.6 - - - -

Skip alignment in training, not data selection. (Karamcheti et al., 2024) illustrated from extensive
empirical experiments that we can skip the alignment phase in VLM pretraining to achieve compa-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

rable performance as the two-phase training. To explore whether it applies to data selection, we
directly apply HYPERINF, DATAINF, LISSA and TRACIN before alignment. Since the projector
gradients are randomly initialized before the alignment phase, we only use the gradients from the
last transformer block in language backbone to compute the influence scores. According to F.4,
while the HYPERINF could still bring slight improvement (0.25 − 1%) above random baseline, all
the other three methods suffer from a significant degradation (> 5% ↓) on the accuracy. We hypoth-
esise that the alignment phase is crucial to learning about the connection between the feature spaces
of language and vision backbones, which is indispensable information for VLM pretraining data
selection. Therefore, we suggest the practitioners apply data selection after the alignment phase.

Table 4: Downstream evaluation accuracies (%) from VLM instruct-tuning data selection experi-
ments (after cross-modal alignment on Projector and LoRA layers). The best results are Bolded
and the second-best are Underlined. Projector+LoRA means the gradient from both the Projector
and LoRA are used to compute approximated scores. Methods with > 5% accuracy degradation are
marked in Red.

Method (Projector+LoRA) (k%) Random DATAINF LISSA TRACIN HYPERINF

VQAv2 5% 60.2 60.7 53.2 59.2 60.3
20% 64.5 64.7 65.1 66.4 67.3

GQA 5% 42.2 42.5 35.9 43.6 45.5
20% 45.5 45.1 46.3 49.8 50.5

POPE 5% 72.2 76.9 57.9 78.9 80.6
20% 83.4 84.0 82.6 84.2 84.5

TextVQA 5% 32.0 32.0 27.4 26.2 26.4
20% 35.8 35.9 34.3 31.7 36.1

Average 5% 51.6 53.0(1.4↑) 43.6(8.0↓) 51.9(0.3↑) 53.2(1.6↑)
20% 57.3 57.4(0.1↑) 57.0(0.3↓) 58.0(0.7↑) 59.6(2.3↑)

6 RELATED WORKS

Gradient-based Data Attribution Methods. Assessing the importance of each datapoint based
on the model’s performance is a widely studied problem. Traditional methods based on Sharpley-
value and LOO (leave-one-out) mechanism often need to train numerous models to get a reliable
score, which limits their application on large models nor datasets (Ghorbani & Zou, 2019; Jia et al.,
2020; Kwon & Zou, 2022; Wang & Jia, 2023). In comparison, by tracing the gradient information
from the model, one can value the contribution of each datapoint along the optimization process.
Various methods are proposed to assess the data influence tracing first-order gradient (Pruthi et al.,
2020). However, those methods risk biasing towards dimensions with larger gradient scales and
the uncertainty from stochasticity (Pooladzandi et al., 2022). This could be mitigated by influence
function-based methods (Koh & Liang, 2020; Kwon et al., 2024; Agarwal et al., 2017), which lever-
age the second-order curvature information to balance the uncertainty of the first-order gradients.

Data Selection for Foundation Models. High-quality datapoints are shown to improve the base
LLM’s performance dramatically. Increasing datapoint’s quality and diversity can effectively induce
the instruction-following ability for large language models (Cao et al., 2024; Chen et al., 2024; Du
et al., 2023; Li et al., 2024; Liu et al., 2024). Furthermore, researches on both task-based traditional
NLP tasks and open-ended instruction tuning datasets have demonstrated its effectiveness (Longpre
et al., 2023a; Zhou et al., 2023; Xu et al., 2023; Wei et al., 2021).

7 CONCLUSION

In this work, we propose HYPERINF as an efficient approximation of influence function with ac-
curate second-order information, which leverage generalized fisher information and the Schulz’s
algorithm. From a convergence test on matrix inversion, we demonstrate the superior accuracy and
stability of the Schulz’s algorithm comparing to other methods. We further illustrate HYPERINF’s
efficacy in a range of data attribution applications, including mislabel data detection, data selection
for LLM finetuning and VLM pretraining. Remarkably, HYPERINF consistently outperforms all the
other baselines, which proves the benefit from an accurate estimation of second-order information.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time, 2017.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language models,
2024.

M Altman. An optimum cubically convergent iterative method of inverting a linear bounded operator
in hilbert space. Pacific Journal of Mathematics Vol. 10, No. 4, 1960.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond, 2023.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second PASCAL recognising textual entailment challenge, 2006.

Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite. Relatif: Identifying explana-
tory training examples via relative influence, 2020. URL https://arxiv.org/abs/2003.
11630.

M. S. Bartlett. Approximate confidence intervals. Biometrika, 40(1/2):12–19, 1953. ISSN
00063444. URL http://www.jstor.org/stable/2333091.

Samyadeep Basu, Philip Pope, and Soheil Feizi. Influence functions in deep learning are fragile,
2021.

Fermı́n S.V. Bazán and Everton Boos. Schultz matrix iteration based method for stable so-
lution of discrete ill-posed problems. Linear Algebra and its Applications, 554:120–145,
2018. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2018.05.022. URL https://www.
sciencedirect.com/science/article/pii/S0024379518302623.

Ratikanta Behera, Krushnachandra Panigrahy, Jajati Keshari Sahoo, and Yimin Wei. m-qr decom-
position and hyperpower iterative methods for computing outer inverses of tensors, 2024. URL
https://arxiv.org/abs/2409.07007.

Adi Ben-Israel and Dan Cohen. On iterative computation of generalized inverses and associated
projections. SIAM Journal on Numerical Analysis, 3(3):410–419, 1966.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The
fifth PASCAL recognizing textual entailment challenge, 2009.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection
for tuning large language models, 2024. URL https://arxiv.org/abs/2307.06290.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca with
fewer data, 2024. URL https://arxiv.org/abs/2307.08701.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil
Mustafa, Sebastian Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, Daniel Salz, Xi Xiong,
Daniel Vlasic, Filip Pavetic, Keran Rong, Tianli Yu, Daniel Keysers, Xiaohua Zhai, and Radu
Soricut. Pali-3 vision language models: Smaller, faster, stronger, 2023.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluating predictive uncertainty, visual object clas-
sification, and recognising tectual entailment, pp. 177–190. Springer, 2006.

11

https://arxiv.org/abs/2003.11630
https://arxiv.org/abs/2003.11630
http://www.jstor.org/stable/2333091
https://www.sciencedirect.com/science/article/pii/S0024379518302623
https://www.sciencedirect.com/science/article/pii/S0024379518302623
https://arxiv.org/abs/2409.07007
https://arxiv.org/abs/2307.06290
https://arxiv.org/abs/2307.08701

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing, 2005.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. Mods: Model-oriented data selection for instruc-
tion tuning, 2023. URL https://arxiv.org/abs/2311.15653.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2020.

James M. Garnett, Adi Ben-Israel, and Stephen S. Yau. A hyperpower iterative method for comput-
ing matrix products involving the generalized inverse. SIAM Journal on Numerical Analysis, 8
(1):104–109, 1971. ISSN 00361429. URL http://www.jstor.org/stable/2949526.

James M Garnett III, Adi Ben-Israel, and Stephen S Yau. A hyperpower iterative method for com-
puting matrix products involving the generalized inverse. SIAM Journal on Numerical Analysis,
8(1):104–109, 1971.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast ap-
proximate natural gradient descent in a kronecker-factored eigenbasis, 2021.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning,
2019.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pp. 1–9. Association for Computational Linguistics, 2007.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in
vqa matter: Elevating the role of image understanding in visual question answering, 2017.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large lan-
guage model generalization with influence functions, 2023a. URL https://arxiv.org/
abs/2308.03296.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large lan-
guage model generalization with influence functions, 2023b.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023.

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif: Scalable
influence functions for efficient model interpretation and debugging, 2021.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

12

https://arxiv.org/abs/2311.15653
http://www.jstor.org/stable/2949526
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiang Hu and Quanzheng Li. Adafish: Fast low-rank parameter-efficient fine-tuning by using second-
order information, 2024. URL https://arxiv.org/abs/2403.13128.

Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering, 2019.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas J. Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
algorithms, 2020.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora, 2023.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models,
2024.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. ReferItGame: Referring to
objects in photographs of natural scenes. In Alessandro Moschitti, Bo Pang, and Walter Daele-
mans (eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 787–798, Doha, Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1086. URL https://aclanthology.org/D14-1086.

Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. Qasc: A dataset
for question answering via sentence composition. arXiv:1910.11473v2, 2020.

Myeongseob Ko, Feiyang Kang, Weiyan Shi, Ming Jin, Zhou Yu, and Ruoxi Jia. The mirrored
influence hypothesis: Efficient data influence estimation by harnessing forward passes, 2024.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions, 2020.

Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving training biases via influence-based
data relabeling. In International Conference on Learning Representations, 2021.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Fei-Fei Li.
Visual genome: Connecting language and vision using crowdsourced dense image annotations,
2016.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical fisher approxi-
mation for natural gradient descent, 2020. URL https://arxiv.org/abs/1905.12558.

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation frame-
work for machine learning, 2022.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models, 2024.

Alycia Lee, Brando Miranda, and Sanmi Koyejo. Beyond scale: the diversity coefficient as a data
quality metric demonstrates llms are pre-trained on formally diverse data, 2023.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models, 2023.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Ling-Hao
Chen, Junhao Liu, Tongliang Liu, Fei Huang, and Yongbin Li. One-shot learning as instruction
data prospector for large language models, 2024. URL https://arxiv.org/abs/2312.
10302.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

13

https://arxiv.org/abs/2403.13128
https://aclanthology.org/D14-1086
https://arxiv.org/abs/1905.12558
https://arxiv.org/abs/2312.10302
https://arxiv.org/abs/2312.10302

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. Transactions of the As-
sociation for Computational Linguistics, 11:635–651, 2023a. doi: 10.1162/tacl a 00566. URL
https://aclanthology.org/2023.tacl-1.37.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023c.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for align-
ment? a comprehensive study of automatic data selection in instruction tuning, 2024. URL
https://arxiv.org/abs/2312.15685.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods
for effective instruction tuning, 2023a. URL https://arxiv.org/abs/2301.13688.

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide to
training data: Measuring the effects of data age, domain coverage, quality, & toxicity, 2023b.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
question answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition, pp. 3195–3204, 2019.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, pp. 735–742, 2010.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
question answering by reading text in images. In ICDAR, 2019.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,

14

https://aclanthology.org/2023.tacl-1.37
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2301.13688

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt
Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wo-
jciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg. Im2text: Describing images using 1 million
captioned photographs. In Neural Information Processing Systems, 2011. URL https://api.
semanticscholar.org/CorpusID:14579301.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: Outperforming curated corpora with web data, and web data only, 2023.

Miodrag S. Petković. Iterative methods for bounding the inverse of a matrix (a survey). Filomat, 9
(3):543–577, 1995. ISSN 03545180, 24060933. URL http://www.jstor.org/stable/
43999236.

Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive second order coresets
for data-efficient machine learning, 2022.

Garima Pruthi, Frederick Liu, Mukund Sundararajan, and Satyen Kale. Estimating training data
influence by tracing gradient descent, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100000+ questions
for machine comprehension of text. In Proceedings of EMNLP, pp. 2383–2392. Association for
Computational Linguistics, 2016.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs, 2021.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
A-okvqa: A benchmark for visual question answering using world knowledge, 2022.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of ACL, 2018.

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for
image captioning with reading comprehension, 2020.

15

https://api.semanticscholar.org/CorpusID:14579301
https://api.semanticscholar.org/CorpusID:14579301
http://www.jstor.org/stable/43999236
http://www.jstor.org/stable/43999236

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read, 2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of EMNLP, pp. 1631–1642, 2013.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

John Tukey. Bias and confidence in not quite large samples. Ann. Math. Statist., 29:614, 1958.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019a.

Hao Wang, Berk Ustun, and Flavio P. Calmon. Repairing without retraining: Avoiding disparate
impact with counterfactual distributions, 2019b.

Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine
learning, 2023.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments,
2019.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Se-
lecting influential data for targeted instruction tuning, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023. URL
https://arxiv.org/abs/2304.12244.

Minghan Yang, Dong Xu, Qiwen Cui, Zaiwen Wen, and Pengxiang Xu. An efficient fisher matrix
approximation method for large-scale neural network optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(5):5391–5403, 2022.

Yu Yang, Siddhartha Mishra, Jeffrey N Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l):
Scalable data selection for fine-tuning large language models by summarizing training trajectories
of small models, 2024.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C. Berg, and Tamara L. Berg. Modeling context
in referring expressions, 2016.

16

https://aclanthology.org/W18-5446
https://arxiv.org/abs/2304.12244

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective, 2024a. URL https://arxiv.org/abs/2402.
16788.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo,
and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more, 2024b. URL https:
//arxiv.org/abs/2406.16793.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
Lima: Less is more for alignment, 2023. URL https://arxiv.org/abs/2305.11206.

17

https://arxiv.org/abs/2402.16788
https://arxiv.org/abs/2402.16788
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2305.11206

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A DERIVATIONS OF INFLUENCE FUNCTION AND ITS VARIANTS

A.1 INFLUENCE FUNCTION

We provide the proof for Influence Function based on the work of Koh & Liang (2020). We have θ⋆
denoted as the minimizer for the empirical risk:

R(θ) :=
1

n

n∑
i=1

ℓ(yi, fθ(xi)) (9)

We also assume that the R is twice-differentiable and strongly convex in θ, therefore:

H(θ) := ∇2
θ
R(θ) = ∇2

θ

(
1

n

n∑
i=1

ℓ(yi, fθ(xi))

)
(10)

exists and is positive definite. Then upweighing the contribution of the kth datapoint, we have:

θ(k)(ϵ) := argmin
θ∈Θ

1

n

n∑
i=1

ℓ (yi, fθ(xi)) + ϵℓ (yk, fθ(xk)) (11)

= argmin
θ∈Θ

R(θ) + ϵℓ(xk,θ) (12)

Define the change of the parameter ∆ϵ := θ(k)(ϵ)− θ⋆ and notice that θ⋆ does not depend on ϵ, the
quantity we want to compute in Equation 1 can be re-written as:

dθ(k)

dε
=

d∆ϵ

dε
(13)

From previous definition, θ(k)(ϵ) is the minimizer for Equation 12, therefore we have the first-order
optimality condition:

∇θR(θ(k)(ϵ)) + ϵ∇θℓ(xk,θ
(k)(ϵ)) = 0 (14)

We then perform the first-order Taylor expansion of the left-hand side since θ(k)(ϵ)→ θ⋆ as ε→ 0:

0 ≈ [∇θR(θ⋆) + ϵ∇θℓ(xk,θ
⋆)] + [∇2

θR(θ⋆) + ϵ∇2
θℓ(xk,θ

⋆)]∆ϵ (15)
We can further obtain:

∆ϵ ≈ −[∇2
θR(θ⋆) + ϵ∇2

θℓ(xk,θ
⋆)]−1[∇θR(θ⋆) + ϵ∇θℓ(xk,θ

⋆)] (16)
Because θ⋆ is the minimizer for R(θ), we plus ∇θR(θ⋆) = 0 and drop the ϵ-term in the first term
of the right-hand side in Equation 16:

∆ϵ ≈ −[∇2
θR(θ⋆)]−1∇θℓ(xk,θ

⋆)ϵ (17)
Lastly, combining Equation 10 and Equation 13 we can get:

dθ(k)

dε

∣∣∣∣
ε=0

= −H (θ⋆)
−1∇θℓk (18)

A.2 INFLUENCE FUNCTION ON VALIDATION LOSS

In particular, the influence of the upweighing datapoint (xk, yk) on the loss at a validation datapoint
(xval
j , yval

j) also has a closed-form formula:

Ixval
j ,y

val
j
(xk, yk) :=

dℓ(xval
j ,θ(k)(ϵ))

dε

∣∣∣∣∣
ε=0

(19)

= ∇θℓ(x
val
j ,θ⋆)⊤

dθ(k)

dε

∣∣∣∣
ε=0

(20)

= −∇θℓ(x
val
j ,θ⋆)⊤H (θ⋆)

−1∇θℓk (21)
Therefore, when we want to evaluate the influence on the whole validation dataset, we can get a
similar formula:

I(xk, yk) = −

(
1

m

m∑
i=1

∇θℓ(y
val
i , fθ(x

val
i))|θ=θ∗

)⊤

H (θ⋆)
−1∇θℓk (22)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 FULL DERIVATION OF DATAINF

Kwon et al. (2024) proposed a closed-form approximation of the Hessian inverse, which greatly
improves the computation efficiency. Firstly, following George et al. (2021), when applying the
negative log-likelihood loss function ℓ(y, fθ(x)) = − log p(y|fθ(x)), the second-order Hessian is
equivalent to the Fisher Information Matrix (FIM) in expectation (Bartlett, 1953), which only in-
volves first-order computations. Consequently, Kwon et al. (2024) approximate the Hessian inverse
leveraging the Sherman-Morrison formula 5:

H (θ)
−1 ≈

(
1

n

n∑
i=1

∇2
θℓi + λId

)−1

≈ (G(θ) + λId)
−1 → Approximation with FIM

≈ 1

n

n∑
i=1

(
∇θℓi∇θℓ

⊤
i + λId

)−1 → Reverse the order of summation and inverse (23)

≈ 1

nλ

n∑
i=1

(
Id −

∇θℓi∇θℓ
⊤
i

λ+∇θℓ⊤i ∇θℓi

)
→ Sherman-Morrison formula (24)

where G(θ) := 1
n

∑n
i=1∇θℓi∇θℓ

⊤
i stands for the Fisher Information Matrix (FIM). While the com-

putation complexity of Equation 24 is reduced to O(d), in compromise, the reverse-order operation
Equation 23 incurs aO(d2) error (Kwon et al., 2024). When applying to large-scale models, it could
risk a large approximation error.

5For simplicity, we denote ℓi := ℓ (yi, fθ(xi))

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B PSEUDO CODE FOR HYPERINF

We provide the complete pseudo algorithm using HYPERINF in Algorithm (2) to compute influence
function for each datapoint in training set Dtrain according to the impact on the validation set Dval.

Algorithm 2 Influence Score computed by HYPERINF

Require: A training dataset D(train) = {(xi, yi)}ni=1, a validation dataset D(val) =

{(x(val)
i , y(val)

i)}mi=1, an objective function ℓ, a deep neural network fθ(x) = fθL◦fθL−1
◦...◦fθ1(x),

where θ = {θ1, ..., θL} and θl ∈ Rdl for l ∈ [L], HYPERINF’s initial guess X0,l for l ∈ [L], HY-
PERINF’s iteration number Niter.

Ensure: Influence Score for each training data point: IHYPERINF(xk, yk) for k = 1, ..., n.

Step 1: Compute the first-order gradients from validation datasets
for l ∈ [L] do

for i ∈ [m] do
Compute∇θlℓ(y

(val)
i , fθ(x

(val)
i)) ∈ Rdl×r, unflattened gradient

end for
Compute vl :=

1
m

∑m
i=1∇θlℓ(y

(val)
i , fθ(x

(val)
i))

end for

Step 2: Compute the inversion using Schulz’s method
for l ∈ [L] do

for i ∈ [n] do
Compute∇θlℓ(yi, fθ(xi)) ∈ Rdl×r, unflattened gradient

end for
Compute ϵl := 0.1× (ndl)

−1∑n
i=1∇θlℓ(yi, fθ(xi)) · ∇θlℓ(yi, fθ(xi))

Compute Al := Gl(θ) + ϵlIdl

Compute approximated inversion for Al: Âl
−1
← SCHULZ INVERSE(Al, X0,l, Niter)

Compute the Hessian-Vector Product: hl ← v⊤l Âl
−1
∈ Rr×dl

end for

Step 3: Compute the Influence Score
for k ∈ [n] do

IHYPERINF(xk, yk)← −
∑L
l=1 [hl∇θlℓ(yk, fθ(xk))]

end for

Function to compute an inversion of a matrix via Schulz’s method
procedure SCHULZ INVERSE(A,X0, Niter)

Input: A matrix A needed to be computed for its inverse, an initial guess X0 for A−1, a
maximum iteration number Niter.

Output: The final approximation XNiter for A−1.

for t ∈ [Niter] do
Iteratively update Xt = Xt−1(2I −AXt−1)

end for
Get the approximation for A−1 ← XNiter

end procedure

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C CONVERGENCE ANALYSIS OF SCHULZ’S METHOD

In this section, we provide convergence analysis of the Schulz’s method. We first give the setup with
notations:

Let A ∈ Rn×n be a non-singular matrix, and Xk be the k-th iteration of the Schulz’s method, defined
as:

Xk+1 = Xk(2I −AXk), (25)
where X0 is the initial approximation of A−1. Define the error at kth iteration as: Rk = I −AXk.
We provide the proof for the following convergence theorems:

Theorem C.1. The matrix of error Rk satisfies a quadratic relation. I.e.,

Rk+1 = R2
k.

Proof. According to Equation 25, at kth iteration, we have:

AXk+1 = AXk(2I −AXk) = AXk(I +Rk).

Plug into Rk+1 = I −AXk+1, we have,

Rk+1 = I −AXk+1 = I −AXk(I +Rk) = I −AXk −AXkRk.

By definition, Rk = I −AXk ⇒ AXk = I −Rk, which gives:

Rk+1 = I − (I −Rk)− (I −Rk)Rk = R2
k.

Theorem C.2. The spectral norm of the error decreases quadratically:

∥Rk+1∥ ≤ ∥Rk∥2. (26)

Proof. Taking norms on both sides:
∥Rk+1∥ = ∥R2

k∥.
Applying the submultiplicative property of matrix norms:

∥R2
k∥ ≤ ∥Rk∥ · ∥Rk∥.

Thus we obtain:
∥Rk+1∥ ≤ ∥Rk∥2.

This proves that the error decreases quadratically with each iteration, provided ∥R0∥ < 1.

Theorem C.3. Given the initial condition that the spectral norm of R0 = I−AX0 satisfies ∥R0∥ <
1, then limk→∞ ∥Rk∥ → 0, limk→∞ Xk → A−1.

Proof. Given ∥R0∥ < 1, then ∥Rk∥ satisfies:

∥Rk∥ ≤ ∥R0∥2
k

following the above proved iterative relation ∥Rk+1∥ ≤ ∥Rk∥2. As k → ∞, ∥Rk∥ → 0 exponen-
tially fast. Consequently, as k →∞,

Xk → A−1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D DETAILS FOR MISLABELED DATA DETECTION TASK

Implementation Details. In this task, we choose rank-stabilized LoRA (Kalajdzievski, 2023) in-
stead of original LoRA (Hu et al., 2021), for it corrects the one limitation of LoRA (i.e. the per-
formance did not improve further with increasing rank) by a simply dividing LoRA adapters by the
square root of their rank, which unlocks the effectiveness of higher adapter ranks in LoRA.

We conduct mislabeled data detection experiment on six binary classification tasks based on GLUE
benchmark (Wang et al., 2019a), which are GLUE-COLA ((Warstadt et al., 2019), detecting whether
a sentence is grammatical acceptable) GLUE-MRPC ((Dolan & Brockett, 2005), detecting whether
the sentences in the pair are semantically equivalent), GLUE-QNLI ((Rajpurkar et al., 2016), de-
termining whether the context sentence contains the answer to the question), GLUE-QQP6 (deter-
mining whether a pair of questions are semantically equivalent), GLUE-RTE ((Dagan et al., 2006;
Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), detecting the entailment),
and GLUE-SST2 ((Socher et al., 2013), predicting the sentiment of a given sentence).

When finetuning the LLM with rsLoRA technique with rank r = 16 in Figure 2 and r = 64 in
Figure 3, we apply the gradients from trainable parameters (i.e. every value and query matrix of the
attention layers) to approximate influence functions. We run HYPERINF for 25 iterations and run
LISSA for 10 iterations following the implementation of Kwon et al. (2024). The total number of
tunable parameters is 1.6M, 7.3M respectively for r = 16, 64.

Moreover, We also experiment using the last layer’s gradients of Roberta-large to detect the
mislabeled datapoints. We only tune the last layer of the model on the corrupted training dataset,
then compute the influence function based on the last layer’s gradients. The results are shown in
Figure 4, which indicates that the last layer’s gradients can also be a candidate for computing the
influence function.

Table 5: Mislabeled Data Detection Rate (%) with r = 16.

Method (LoRA) (k%) DATAINF LISSA TRACIN HYPERINF

COLA 20% 39.66 32.18 40.25 51.55
40% 50.59 48.81 49.74 66.04

MRPC 20% 58.52 24.46 57.75 60.89
40% 68.89 37.88 67.34 79.17

QNLI 20% 48.92 43.70 45.37 64.77
40% 56.51 50.18 49.51 76.66

QQP 20% 51.11 38.14 52.18 57.85
40% 62.07 44.74 61.59 73.07

RTE 20% 36.74 35.07 35.14 47.90
40% 47.85 47.85 45.51 57.96

SST2 20% 74.96 44.93 66.51 69.00
40% 80.51 46.62 71.96 78.44

6https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

22

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Comparisons between HYPERINF with GFIM and HYPERINF with FIM To explore if using
GFIM can lead to performance degradation, we compare HYPERINF with GFIM and HYPERINF
with FIM. In this experiment, we set rank r = 8 since larger ranks (e.g. r = 16, 32, ...) would cause
the Out-Of-Memory error in FIM. The results are shown in Figure 5, where we do not observe the
significantly worse performance in HYPERINF with GFIM, and it performs even better on some
datasets than FIM, such as QQP and SST2.

0 20 40 60 80 100
0

20

40

60

80

100

De
te

ct
io

n
Ra

te
 rt

(%
)

COLA

HyperINF
TracIN
DataInf
LiSSA
Random
Oracle

0 20 40 60 80 100
0

20

40

60

80

100
MRPC

0 20 40 60 80 100
0

20

40

60

80

100
QNLI

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100

De
te

ct
io

n
Ra

te
 rt

(%
)

QQP

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100
RTE

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100
SST2

Figure 3: Mislabeled data detection results on GLUE benchmark datasets with rank r = 64,
#params = 7.3M .

0 20 40 60 80 100
0

20

40

60

80

100

De
te

ct
io

n
Ra

te
 rt

(%
)

COLA

TracIN
DataInf
Low-Rank HyperINF
LiSSA
Random
Oracle

0 20 40 60 80 100
0

20

40

60

80

100
MRPC

0 20 40 60 80 100
0

20

40

60

80

100
QNLI

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100

De
te

ct
io

n
Ra

te
 rt

(%
)

QQP

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100
RTE

0 20 40 60 80 100
Inspection Rate p(%)

0

20

40

60

80

100
SST2

Figure 4: Mislabeled data detection results on GLUE benchmark datasets, where influence function
is computed based on the last layer’s gradients.

0 20 40 60 80 100
0

20

40

60

80

100

De
te

ct
io

n
Ra

te
 (%

)

COLA

TracIN
DataInf
GFIM HyperINF
FIM HyperINF
LiSSA
Random
Perfect

0 20 40 60 80 100
0

20

40

60

80

100
MRPC

0 20 40 60 80 100
0

20

40

60

80

100
QNLI

0 20 40 60 80 100
Data inspected (%)

0

20

40

60

80

100

De
te

ct
io

n
Ra

te
 (%

)

QQP

0 20 40 60 80 100
Data inspected (%)

0

20

40

60

80

100
RTE

0 20 40 60 80 100
Data inspected (%)

0

20

40

60

80

100
SST2

Figure 5: Mislabeled data detection results on GLUE benchmark datasets with rank r = 8.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.1 ANALYSIS OF COMPLEXITY AND TIME COSTS.

To understand the computation overheads incurred from different data attribution algorithms, we
report both time costs on CPU and one Nvidia A100 GPU according to 6 and 7 on two datasets
(COLA and MRPC) from the GLUE benchmark. Specifically, we only record the running time for
computing the inverse Hessian vector product v⊤G(θ) with different LoRA ranks r = 1, 2, 4, 8, 16.
We observe that the efficiency of three algorithms ranks largely differently between GPU and CPU.
On CPU, DATAINF introduces least time overheads while HYPERINF incurs the most amount of
extra time costs. In addition, the time costs from DATAINF and LISSA increase quadratically with
LoRA rank r while HYPERINF increase linearly (note that the y-axis is on log scale). Alternatively,
on one Nvidia A100 GPU, the time costs from all algorithms are almost constant across LoRA ranks,
and HYPERINF costs least of time, followed by DATAINF. In comparison, LISSA requires (∼ 4×)
more time costs than HYPERINF and DATAINF.

1 2 4 8 16
Rank

102

Ti
m

e
co

st
 (s

)

Time cost (CPU) on COLA (N=8551)

HyperINF
DataInf
LiSSA

1 2 4 8 16
Rank

101

102

Time cost (CPU) on MRPC (N=3668)

Figure 6: Runtime on CPU for approximating Hessian-vector product using different methods on
GLUE-COLA and GLUE-MRPC datasets.

1 2 4 8 16
Rank

100

200

300

400

Ti
m

e
co

st
 (s

)

Time cost on COLA (N=8551)

HyperINF
DataInf
LiSSA

1 2 4 8 16
Rank

25

50

75

100

125

150

Time cost on MRPC (N=3668)

Figure 7: Runtime on GPU for approximating Hessian-vector product using different methods on
GLUE-COLA and GLUE-MRPC datasets. HYPERINF takes lowest time costs compared to other
methods.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.2 CORRELATION WITH LEAVE-ONE-GROUP-OUT (LOGO) SCORES.

The performance of a training data attribution (TDA) algorithm can be assessed by its ability to
recover the true Leave-One-Out (LOO) score (Tukey, 1958) The LOO score of a given datapoint xi
is defined as the gap of validation losses of a model before and after removing the certain datapoint.
To prevent the large computations incurred from retraining LLMs, we evaluate the TDA algorithms
with Leave-One-Group-Out (LOGO). Firstly, we rank all training datapoints according to assigned
scores and split them equally into K groups from high to low scores (K = 5 in our experiments).
On each group of data Ci, we iteratively remove Ci and retraining the LLM on the remaining set
of data Dtrain/Ci. We define the LLM trained on the full training set as θ0 and the LLM retrained
with removing Ci as θ/Ci

Then we measure the LOGO score as:

LOGO(Ci) = L(θ/Ci
, Dval)− L(θ0, Dval) (27)

If Ci contains high quality datapoints, excluding Ci would hurt the model’s performance and lead to
an increment of validation loss. Therefore, the LOGO score is proportional to the data quality within
the group. In that case, we measure the rank correlation between the average influence score assigned
to all groups and the corresponding LOGO scores. We report the spearman rank correlation scores
on all four algorithms across six datasets in GLUE benchmark in Table 6. The results demonstrate
HYPERINF outperforms all the other baselines on the accuracy of data attribution.

Method (LoRA) DATAINF LISSA TRACIN HYPERINF

COLA 0.50 0.49 -0.99 0.70
MRPC 0.0 0.0 0.0 0.20
QNLI -0.40 -0.30 -0.60 0.10
QQP 0.30 0.49 -0.30 0.70
RTE 0.60 0.60 0.40 1.00
SST2 -0.90 -0.30 -0.10 0.70

Table 6: Spearman Rank Correlation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E DATA SELECTION FOR LLM FINETUNING

Dataset Details. We run the experiments on four LLM reasoning tasks: QASC (a question-
answering dataset with a focus on sentence composition. It consists of 9, 980 8-way multiple-choice
questions about grade school science) (Khot et al., 2020), HellaSwag (a challenging dataset for eval-
uating commonsense NLI) (Zellers et al., 2019), PIQA (a dataset introducing the task of physical
commonsense reasoning) (Bisk et al., 2020) and LogiQA (is constructed from the logical compre-
hension problems from publically available questions of the National Civil Servants Examination of
China) (Liu et al., 2020). For LogiQA, we use the official validation set asDval in data selection and
use labelled official test set for evaluation; for other three datasets, since the labels for the official
test set are not available, we randomly split 20% from the official validation set as Dval, and use the
rest 80% validation set as the held-out test set.

Implementation Details. For LoRA-finetuning, we follow the same setting as we implement in
Mislabeled Data Detection task while setting the rank r = 64. The hyperparameters are set as the
same as in VLM experiments (Table 7), while the Epoch number is set to 3 for fully-finetuning and
5 for LoRA-finetuning across k = 5%, 20%, 40%. When selecting all datapoints (i.e. k = 100%),
we finetune it for only 1 epoch.

Evaluation Statistics. We present the detailed statistics of evaluation results in Table 2 and Fig-
ure 8 for LoRA-finetuning experiments, and Table 3 and Figure 9 for fully-finetuning experiments.
HYPERINF significantly outperforms all baselines.

0.1 0.2 0.3 0.4
Ratio

10

20

30

40

Ac
cu

ra
cy

QASC

DataInf
HyperINF
LiSSA
TracIN
Random

0.1 0.2 0.3 0.4
Ratio

88.5

89.0

89.5

HellaSwag

0.1 0.2 0.3 0.4
Ratio

52

54

56

PIQA

0.1 0.2 0.3 0.4
Ratio

26

28

LogiQA

Figure 8: Evaluation accuracy according to data selection ratio (k) for LLM LoRA-finetuning.
HYPERINF greatly improves the reasoning accuracy above other baselines.

0.1 0.2 0.3 0.4
Ratio

10

20

30

40

50

Ac
cu

ra
cy

QASC

DataInf
HyperINF
LiSSA
TracIN
Random

0.1 0.2 0.3 0.4
Ratio

70

75

80

85

HellaSwag

0.1 0.2 0.3 0.4
Ratio

45

50

55

60
PIQA

0.1 0.2 0.3 0.4
Ratio

25

30

35

40
LogiQA

Figure 9: Evaluation accuracy according to data selection ratio (k) for LLM fully-finetuning.
Influence scores are computed based on the gradients of the last layer of LLM. HYPERINF shows
significantly better performances above other baselines especially when k = 5%.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F DATA SELECTION FOR VLM PRETRAINING

F.1 DETAILS OF VLM ARCHITECTURE AND TRAINING STRATEGY

Following LLaVa (Liu et al., 2023c), we adopt the commonly used VLM architecture which consists
of three components: a vision backbone Vϕ, a projector Fψ and a language backbone LMθ. Both
the vision and language backbones are pre-trained, while the projector is randomly initialized and
would be tuned through the alignment and instruct-tuning phases using multimodal data (Karamcheti
et al., 2024; Liu et al., 2023c; Bai et al., 2023; Chen et al., 2023). We follow the auto-regressive
training paradigm of vision-language models, where the images are tokenized into patches (i.e.
visual tokens) to fit into the conventional training patterns of language models. Specifically, each
datapoint in a multimodal instruct-tuning dataset can be represented as a tuple (ximg,xtext). We
get a sequence of embeddings of the image patches through the vision backbone pimg = Vϕ(ximg)
then feed it into the projector to obtain the transformed features eimg = Fψ(pimg). Meanwhile, we
have the embeddings from textual tokens as etext = LMθ(xtext). We then concatenate the features
from both modalities together to conduct next-token predictions. In our experiments, we apply
CLIP ViT-Large (Radford et al., 2021) with a patch size of 14 and input resolution of 336px
as the vision backbone and Llama2-7B (Touvron et al., 2023) as the language backbone. For
the projector Fψ , we initialize a two-layer GELU-MLP (Hendrycks & Gimpel, 2023). Along the
suggested setting from Karamcheti et al. (2024), we freeze the vision backbone Vϕ throughout the
entire training process while only tuning the projector Fψ and the language backbone LMθ.

Specifically, we utilize the Prismatic-VLM framework7 (Karamcheti et al., 2024) to train the VLM.
We use 6xA100 80G GPUs to train the model, and the hyperparameters are set as Table 7.

Table 7: Hyperparameters setting for training VLM

Hyperparameters Values

Epoch 1
Optimizer AdamW
Learning Rate 2e-5
Weight Decay 0.1
Max Grad Norm 1.0
Warmup Ratio 0.03
Batch Size per GPU 16
Scheduler Warmup & Cosine Decay

F.2 DETAILS OF VLM DATASET

Instruct-tuning Dataset. We follow the work of Karamcheti et al. (2024) and this dataset con-
tains 665K multimodal instruct tuning examples8. Liu et al. (2023b) has identified a set of ”trigger
prompts” for each dataset in the mixture, to induce more capabilities of VLM. The datasets are
sourced as follows, where we removed ShareGPT (language-only) in our experiments. We split it
into a training dataset and a validation dataset as 8 : 2 ratio.

LlaVa Synthetic Data (158K): A synthetically generated dataset of conversations, fine-grained de-
scriptions, and question-answering data from Liu et al. (2023c), built by prompting GPT-4 (OpenAI
et al., 2024) with image captions and object bounding boxes from COCO (Lin et al., 2014).

Standard VQA Data (224K): A combination of visual question answering data sourced from
the training sets of VQAv2 (general question answering) (Goyal et al., 2017), GQA (spa-
tial and compositional reasoning) (Hudson & Manning, 2019), OK-VQA (reasoning requir-
ing external knowledge) (Marino et al., 2019), and OCR-VQA (reasoning over text/logos
in images) (Mishra et al., 2019). LLaVa v1.5 defines the following trigger prompt:
”〈Question〉? Answer the question using a single word or phrase.”

7https://github.com/TRI-ML/prismatic-vlms?tab=readme-ov-file
8It can be downloaded following the instructions of https://github.com/TRI-ML/

prismatic-vlms

27

https://github.com/TRI-ML/prismatic-vlms?tab=readme-ov-file
https://github.com/TRI-ML/prismatic-vlms
https://github.com/TRI-ML/prismatic-vlms

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Multiple Choice VQA Data (50K). Multiple choice visual question answer-
ing data sourced from A-OKVQA (requires diverse external knowledge)
(Schwenk et al., 2022). LLaVa v1.5 defines the following trigger prompt:
”〈Question〉? A. 〈Option A〉 B. 〈Option B〉... Answer with the option’s
letter from the given choices directly.”

Captioning Data (22K). Images and captions sourced from TextCaps (images with
text/logos) (Sidorov et al., 2020). LLaVa v1.5 defines the following trigger prompt:
”Provide a one-sentence caption for the provided image.”

Referring Expression Data (116K). Referring expression grounding (bounding box predic-
tion) and region captioning data sourced from RefCOCO (Kazemzadeh et al., 2014; Yu
et al., 2016) and Visual Genome (Krishna et al., 2016). For bounding box prediction (lo-
calization), the model needs to generate normalized bounding box coordinates (as a natural
language string). For the localization task, LLaVa v1.5 defines the following trigger prompt:
”〈Referring Expression〉 Provide the bounding box coordinates of the
regionthis sentence describes.”

For the inverse task (region caption), LLaVa v1.5 defines a separate trigger prompt:
”Provide the bounding box coordinate of the region this sentence
describes.”

F.3 DATA SELECTION AFTER CROSS-MODAL ALIGNMENT WITH PROJECTOR AND LORA
OF LANGUAGE BACKBONE

Details of Cross-Modal Alignment. We keep the same hyperparameter setting as in Table 7
and adopt LoRA to the language backbone. We keep the same LoRA setting in the LLM LoRA-
finetuning. In the alignment phase, we tune the projector and LoRA layers while keeping other parts
frozen. We use the Vision-Language Alignment dataset (Karamcheti et al., 2024), which consists of
558K (image, caption) pairs, where the caption is a sentence description of the corresponding image.
The images are sourced from LAION (Schuhmann et al., 2021), Conceptual Captions (Sharma et al.,
2018) and SBU Captions (Ordonez et al., 2011). Considering the limited computation resources, we
randomly select 5% datapoints from the alignment dataset for the alignment phase. We leave the
larger-scale experiments to future work.

Details of the Instruct-tuning. Because of the limited computation resources, we constrain our
experiments on 10% of instruct-tuning training dataset used in F.2. We compute the influence func-
tion based on the gradients from both Project and LoRA layers, then select k = 5%, 20%, 40%
datapoints using various influence function-based methods from the 10% training subset, which is
equivalent to 0.5%, 2%, 4% of the original 665K instruct-tuning dataset. In this experiment, we also
finetune the projector and LoRA layers of the language backbone and keep other parts frozen.

F.4 VLM PRETRAINING BEFORE CROSS-MODAL ALIGNMENT

Setup. Karamcheti et al. (2024) illustrated from extensive empirical experiments that only applying
instruct-tuning can achieve comparable performant pretrained VLMs as the conventional two-phase
training (cross-modal alignment then instruct-tuning) for LLaVa (Liu et al., 2023c). Thus, we hereby
skip the alignment phase in LLaVa (Liu et al., 2023c) and aim to select the most beneficial multi-
modal instruct-tuning datapoints for more efficient VLM pretraining (instruct-tuning only). Since
the projector is randomly initialized which is not suitable for computing influence function, we use
the gradient of the last layer of the pretrained language backbone for HYPERINF and all baselines,
to select the datapoints. In this experiment, we compute all instruct-tuning training datapoint’s in-
fluence score of each method, then select the top-k% (k = 20%, 40%, 80%) subset with the lowest
scores. During instruct tuning of this experiment, we tune the projector and the whole language
backbone while keeping the vision backbone frozen.

Results. We present the evaluation accuracies on four multimodal downstream tasks in Table 8.
Notably, when selecting k = 20% of datapoints, HYPERINF improves the accuracy in average
by 7.20% above DATAINF, 8.37% above LISSA and 9.11% above TRACIN. However, we also
note that when the selection ratio gets larger (k > 40%), the performance of other baselines will

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

approach HYPERINF, since the impact from approximation errors on the data ranking is mitigated.
Meanwhile, we observe that the random selection is a very strong baseline for all tasks, where
only HYPERINF has a small improvement above the random baseline (0.25%) in average accuracy
while all the other methods cause a large performance degradation (> 5%). We hypothesize that
using pretrained LLM backbone without leveraging cross-modal alignment information may lead to
sub-optimal results.

Evaluation Statistics. We present detailed statistics for downstream evaluations in Table 8 and
Figure 10. HYPERINF greatly improves the accuracies across all tasks above the other data selection
baselines, while the random selection is a strong baseline. When selecting 20% subset, HYPERINF
is the only method that could outperform random selection according to average accuracy.
Table 8: Downstream evaluation accuracies (%) from VLM instruct-tuning data selection ex-
periments (before cross-modal alignment). The best results are Bolded and the second-best are
Underlined. The gradient from the last layer of the language backbone is used to compute approx-
imated scores. HYPERINF could outperform the Random baseline while the other methods fail
when selection ratios are small. The ↑ (↓) indicates the improvement (degradation) compared to the
Random baseline. Methods with > 5% accuracy degradation are marked in Red.

Method (k%) Random DATAINF LISSA TRACIN HYPERINF

20% 71.30 66.91 66.20 65.33 70.40
VQAv2 40% 74.84 75.35 75.92 75.84 75.27

60% 76.29 75.35 76.99 76.95 76.89

20% 55.92 53.29 52.23 51.03 57.97
GQA 40% 59.83 60.95 62.41 61.76 61.63

60% 61.49 62.97 63.11 62.62 63.35
20% 86.11 86.04 85.52 85.04 85.66

POPE 40% 86.58 85.98 86.39 86.52 86.91
60% 87.00 86.63 86.40 86.99 86.92

20% 36.20 15.50 13.10 12.70 36.50
TextVQA 40% 45.00 45.60 44.90 44.90 45.70

60% 47.60 49.40 48.90 49.20 49.20

20% 62.38 55.43(6.95↓) 54.26(8.12↓) 53.52(8.86↓) 62.63(0.25↑)
Average 40% 66.56 66.97(0.41↑) 67.25(0.69↑) 67.40(0.84↑) 67.38(0.82↑)

60% 68.09 68.59(0.50↑) 68.85(0.76↑) 68.94(0.85↑) 69.09(1.00↑)

0.2 0.4 0.6
Ratio

65

70

75

Ac
cu

ra
cy

VQAv2

DataInf
HyperINF
LiSSA
TracIN
Random

0.2 0.4 0.6
Ratio

55

60

GQA

0.2 0.4 0.6
Ratio

85.0

85.5

86.0

86.5

87.0
POPE

0.2 0.4 0.6
Ratio

20

30

40

50
TextVQA

Figure 10: Downstream evaluation for VLM instruct-tuning data selection (before cross-modal
alignment). HYPERINF benefits the most when selecting a small subset k = 20%, from its accurate
approximation of influence function. With k increasing, the performance of other baselines approach
HYPERINF, since the impact from approximation errors is mitigated. Random selection is a strong
baseline for all data selection methods.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

G COMPARISON BETWEEN MATRIX INVERSION ALGORITHMS

Implementation Details. In this section, we compare the efficiency of computing inverse of matri-
ces between Schulz’s method and other commonly used methods9, including Gaussian Elimination,
Conjugate Gradient, Generalized Minimal Residual method (GMRES) and Faster Gaussian Elimi-
nation (i.e. torch.inverse). For the iterative methods, we all set the number of iterations to 20
for fair comparisons. We follow the same step in Section. 4 to construct the invertible matrix M , and
set the dimension of the matrix in different scales: d ∈ {16, 64, 256, 1024, 4096} and N = 12800.
We use the Frobenius Norm to measure the error between the approximated and true inverse, where
we set the Gaussian Elimination as the ground truth. In addition to the error comparison, we also
compare the time cost of each method in terms of efficiency aspect. We run the experiments with 3
random seeds and report the average and standard deviation of time costs. All the experiments are
done with a single A100 GPU.

Results. The comparisons of error and time cost are shown in Table 9 and Table 10 as well as
Figure 11. Schulz achieves a similar error margin as FGE, which is better than CG and GMRES
in most cases. Furthermore, Schulz also has the lowest time cost generally in different dimension
settings even when d = 4096, while other methods observe a significant increase in running time as
ranks become larger(especially for Gaussian Elimination, Conjugate Gradient and GMRES). This
illustrates the efficiency and stability of HYPERINF since Schulz’s method is the main part of our
method.
Table 9: Error comparisons among different methods for computing the inverse of the matrix. CG,
and FGE denote the Conjugate Gradient and Faster Gaussian Elimination respectively. We reimple-
mented all the algorithms in torch if the original implementation does not support GPU accelera-
tion.

Matrix Dim CG FGE GMRES Schulz

16 3.5e-10 ±1.2e-10 3.0e-11 ±3.1e-12 1.3e-10 ±4.2e-11 4.2e-11 ±5.1e-12

64 9.7e-10 ±5.2e-11 8.7e-11 ±8.6e-12 1.6e-10 ±1.7e-11 1.4e-10 ±3.9e-12

256 9.9e-9 ±3.6e-10 3.9e-10 ±1.1e-11 8.9e-10 ±1.3e-10 5.4e-10 ±1.3e-11

1024 1.2e-8 ±5.3e-10 2.1e-9 ±1.8e-11 3.7e-9 ±3.8e-11 2.5e-9 ±3.1e-11

4096 1.2e-7 ±5.1e-10 2.1e-8 ±1.9e-10 1.5e-7 ±7.5e-10 2.7e-8 ±2.0e-10

Table 10: Time cost (s) comparisons among different methods for computing the inverse of the ma-
trix. GE, CG and FGE denote the Gaussian Elimination, Conjugate Gradient and Faster Gaussian
Elimination respectively. We reimplemented all the algorithms in torch if the original implemen-
tation does not support GPU acceleration.

Matrix Dim GE CG FGE GMRES Schulz

16 0.04 ±0.02 0.11 ±0.005 0.02±0.03 0.41±0.02 0.002±0.002

64 0.31 ±0.02 0.43±0.03 0.01±0.01 2.27±0.17 0.0008±0.0001

256 2.55±0.02 2.37±0.11 0.001±0.0005 12.7±0.31 0.002±0.002

1024 23.7±0.10 14.6± 0.06 0.007±0.0003 77.1 ±0.44 0.002 ±0.002

4096 313.8±2.29 107.9±5.13 0.07±0.009 581.6±8.15 0.001±0.0005

9https://github.com/devzhk/Pytorch-linalg

30

https://github.com/devzhk/Pytorch-linalg

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

16 64 256 1024 4096
Matrix Dimension

10 3

10 2

10 1

100

101

102

103

Ti
m

e
(s

)

Gaussian Elimination
Conjugate Gradient
FGE (torch.inverse)
Schulz
GMRES (torch)
GMRES (scipy)

Figure 11: Time cost comparisons among different methods for computing the inverse of the matrix.
Schulz presents superior efficiency than other methods.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

H SUPPLEMENT RESULTS OF CONVERGENCE TEST ON MATRIX INVERSION

We follow the same setting as in section 4 and construct matrices M = 1
N

∑N
i=1 sis

⊤
i +λI ∈ Rd×d.

To study the convergence with various data distribution and initialization condition, we report the
results with si and v vectors drawn from 5 difference distributions:

• Each element of si and v are drawn from Standard Normal Distribution: N (0, 1)

• Each element of si and v are drawn from Normal Distribution: N (0.5, 1)

• Each element of si and v are drawn from Normal Distribution: N (0, 5)

• Each element of si and v are drawn from Normal Distribution: N (0.5, 5)

• Each element of si and v are drawn from Uniform Distribution: U(0, 1)

We also include the Neumann Series (which is the same method of LiSSA) and Successive Over
Relaxation (SOR) methods to compare. For SOR, the iteration is shown as:

X(k+1) = (D − ωL)−1(ωU + (1− ω)D)X(k) + ω(D − ωL)−1 (28)

where D,L,U denote the diagonal, lower and upper triangular parts of M . ω is a hyperparameter,
when ω > 1 it is overrelaxation, and when ω < 1 it is underrelaxation. We choose ω = 0.5, 1.5
for experiments. To measure the error for all methods, we use the Frobenius norm of the matrix
||Q̂−Q||F .

Results. The results are shown as Figure 12, Figure 13, Figure 14, Figure 15, and Figure 16. HY-
PERINF with Schulz’s algorithm demonstrates remarkable stability and convergence performance,
which is robust with various data distribution and initial conditions. LISSA only converges in a few
circumstances, indicating it’s sensitive to the initial condition and matrix distributions. For SOR,
only when the data distribution is from N (0, 1) (see Figure 12 and Figure 13) it can converge in
limited circumstances.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0 10 20 30 40
Iteration

0

1000

2000

3000

4000

5000

6000

Er
ro

r

HyperINF N=200
dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

0

1000

2000

3000

4000

5000

6000
HyperINF N=800

0 10 20 30 40
Iteration

0

50

100

150

200

250
HyperINF N=6400

0 10 20 30 40
Iteration

0

20

40

60

80

100

HyperINF N=12800

0 5 10 15 20 25
Iteration

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

LiSSA N=200

dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

103

106

109

1012

1015

1018

LiSSA N=800

0 10 20 30 40
Iteration

10 3

100

103

106

109

1012

1015 LiSSA N=6400

0 10 20 30 40
Iteration

10 4

10 2

100

102

104

106

LiSSA N=12800

1000 2000 3000 4000
Dimension d

1360

1380

1400

1420

1440

1460

1480

1500

Er
ro

r

DataInf N=200

1000 2000 3000 4000
Dimension d

2200

2300

2400

2500

2600

2700

2800

DataInf N=800

1000 2000 3000 4000
Dimension d

2500
3000
3500
4000
4500
5000
5500
6000

DataInf N=6400

1000 2000 3000 4000
Dimension d

2500
3000
3500
4000
4500
5000
5500
6000
6500

DataInf N=12800

0 5 10 15 20 25
Series Length

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

Neumann N=200

dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Series Length

103

106

109

1012

1015

1018

Neumann N=800

0 10 20 30 40
Series Length

10 3

100

103

106

109

1012

1015 Neumann N=6400

0 10 20 30 40
Series Length

10 4

10 2

100

102

104

106

Neumann N=12800

0.04 0.02 0.00 0.02 0.04
Iteration

100

101

Lo
g

of
 E

rro
r

SOR N=200
dim=512
dim=1024
dim=2048
dim=4096

0.0 2.5 5.0 7.5 10.0 12.5
Iteration

1015

1016

1017

1018

1019
SOR N=800

0 10 20 30 40
Iteration

102

105

108

1011

1014

1017

1020 SOR N=6400

0 10 20 30 40
Iteration

102

104

106

108

1010

SOR N=12800

Figure 12: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 0.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from the Standard Normal DistributionN (0, 1). Only HYPERINF can converge to a low
error rate in all cases. For LISSA, it does converge in some cases (e.g. N = 6400, dim = 512), but
would diverge when dim is larger. SOR only converges when N is large and dim is small.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0 10 20 30 40
Iteration

0

1000

2000

3000

4000

5000

6000

Er
ro

r

HyperINF N=200
dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

0

1000

2000

3000

4000

5000

6000
HyperINF N=800

0 10 20 30 40
Iteration

0

50

100

150

200

250

HyperINF N=6400

0 10 20 30 40
Iteration

0

20

40

60

80

100

HyperINF N=12800

0 5 10 15 20 25
Iteration

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

LiSSA N=200

dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

103

105

107

109

1011

1013

1015

1017

1019
LiSSA N=800

0 10 20 30 40
Iteration

10 3

100

103

106

109

1012

1015 LiSSA N=6400

0 10 20 30 40
Iteration

10 4

10 2

100

102

104

106

LiSSA N=12800

1000 2000 3000 4000
Dimension d

1325

1350

1375

1400

1425

1450

1475

1500

1525

Er
ro

r

DataInf N=200

1000 2000 3000 4000
Dimension d

2300

2400

2500

2600

2700

2800

2900 DataInf N=800

1000 2000 3000 4000
Dimension d

2500
3000
3500
4000
4500
5000
5500
6000

DataInf N=6400

1000 2000 3000 4000
Dimension d

2000

3000

4000

5000

6000

DataInf N=12800

0 5 10 15 20 25
Series Length

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

Neumann N=200

dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Series Length

103

105

107

109

1011

1013

1015

1017

1019
Neumann N=800

0 10 20 30 40
Series Length

10 3

100

103

106

109

1012

1015 Neumann N=6400

0 10 20 30 40
Series Length

10 4

10 2

100

102

104

106

Neumann N=12800

0.04 0.02 0.00 0.02 0.04
Iteration

100

101

Lo
g

of
 E

rro
r

SOR N=200
dim=512
dim=1024
dim=2048
dim=4096

0 1 2 3
Iteration

1015

1016

1017

1018

SOR N=800

0 10 20 30 40
Iteration

102

105

108

1011

1014

1017

SOR N=6400

0 10 20 30 40
Iteration

102

105

108

1011

1014

1017

SOR N=12800

Figure 13: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 1.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from the Standard Normal DistributionN (0, 1). Only HYPERINF can converge to a low
error rate in all cases. For LISSA, it does converge in some cases (e.g. N = 6400, dim = 512), but
would diverge when dim is larger. SOR only converges when N is large and dim is small.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 10 20 30 40
Iteration

0

1000

2000

3000

4000

5000

6000

Er
ro

r

HyperINF N=200
dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

0

1000

2000

3000

4000

5000

HyperINF N=800

0 10 20 30 40
Iteration

0

50

100

150

200

250

HyperINF N=6400

0 10 20 30 40
Iteration

0

20

40

60

80

100

HyperINF N=12800

0 2 4 6
Iteration

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

LiSSA N=200

dim=512
dim=1024
dim=2048
dim=4096

0 2 4 6
Iteration

104

106

108

1010

1012

1014

1016

1018
LiSSA N=800

0 2 4 6
Iteration

104

106

108

1010

1012

1014

1016

1018
LiSSA N=6400

0 2 4 6
Iteration

104

106

108

1010

1012

1014

1016

1018
LiSSA N=12800

1000 2000 3000 4000
Dimension d

1800

2000

2200

2400

2600

2800

Er
ro

r

DataInf N=200

1000 2000 3000 4000
Dimension d

2400

2600

2800

3000

3200

3400

3600

3800
DataInf N=800

1000 2000 3000 4000
Dimension d

3000

4000

5000

6000

DataInf N=6400

1000 2000 3000 4000
Dimension d

3000

4000

5000

6000

7000
DataInf N=12800

0 2 4 6
Series Length

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

Neumann N=200

dim=512
dim=1024
dim=2048
dim=4096

0 2 4 6
Series Length

104

106

108

1010

1012

1014

1016

1018
Neumann N=800

0 2 4 6
Series Length

104

106

108

1010

1012

1014

1016

1018
Neumann N=6400

0 2 4 6
Series Length

104

106

108

1010

1012

1014

1016

1018
Neumann N=12800

0.04 0.02 0.00 0.02 0.04
Iteration

100

101

Lo
g

of
 E

rro
r

SOR N=200
dim=512
dim=1024
dim=2048
dim=4096

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=800

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=6400

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=12800

Figure 14: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 1.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from th Normal Distribution N (0.5, 1). Only HYPERINF can converge to a low error
rate in all cases. For other methods, they all diverge. For SOR, it has the nan issue.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0 10 20 30 40
Iteration

0

5000

10000

15000

20000

25000

30000

Er
ro

r

HyperINF N=200
dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

0

5000

10000

15000

20000

25000

30000 HyperINF N=800

0 10 20 30 40
Iteration

0

10

20

30

40

50

60
HyperINF N=6400

0 10 20 30 40
Iteration

0

5

10

15

20

HyperINF N=12800

0 2 4 6
Iteration

105

107

109

1011

1013

1015

1017

1019

Lo
g

of
 E

rro
r

LiSSA N=200

dim=512
dim=1024
dim=2048
dim=4096

0 2 4 6 8
Iteration

104

106

108

1010

1012

1014

1016

1018

LiSSA N=800

0 2 4 6 8 10
Iteration

104

106

108

1010

1012

1014

1016

1018

LiSSA N=6400

0 2 4 6 8 10
Iteration

104

106

108

1010

1012

1014

1016

1018

LiSSA N=12800

1000 2000 3000 4000
Dimension d

6800

6900

7000

7100

7200

7300

7400

7500

Er
ro

r

DataInf N=200

1000 2000 3000 4000
Dimension d

11500

12000

12500

13000

13500

14000

DataInf N=800

1000 2000 3000 4000
Dimension d

10000

15000

20000

25000

30000

DataInf N=6400

1000 2000 3000 4000
Dimension d

12500
15000
17500
20000
22500
25000
27500
30000
32500 DataInf N=12800

0 2 4 6
Series Length

105

107

109

1011

1013

1015

1017

1019

Lo
g

of
 E

rro
r

Neumann N=200

dim=512
dim=1024
dim=2048
dim=4096

0 2 4 6 8
Series Length

104

106

108

1010

1012

1014

1016

1018

Neumann N=800

0 2 4 6 8 10
Series Length

104

106

108

1010

1012

1014

1016

1018

Neumann N=6400

0 2 4 6 8 10
Series Length

104

106

108

1010

1012

1014

1016

1018

Neumann N=12800

0.04 0.02 0.00 0.02 0.04
Iteration

100

101

Lo
g

of
 E

rro
r

SOR N=200
dim=512
dim=1024
dim=2048
dim=4096

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=800

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=6400

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=12800

Figure 15: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 1.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from the Normal DistributionN (0, 5). Only HYPERINF can converge to a low error rate
in all cases. For other methods, they all diverge. For SOR, it has the nan issue.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

0 10 20 30 40
Iteration

0

250

500

750

1000

1250

1500

1750

Er
ro

r

HyperINF N=200
dim=512
dim=1024
dim=2048
dim=4096

0 10 20 30 40
Iteration

0

250

500

750

1000

1250

1500

HyperINF N=800

0 10 20 30 40
Iteration

0

100

200

300

400

500
HyperINF N=6400

0 10 20 30 40
Iteration

0

50

100

150

200

250

300
HyperINF N=12800

0 2 4 6
Iteration

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

LiSSA N=200

dim=512
dim=1024
dim=2048
dim=4096

0 2 4 6
Iteration

104

106

108

1010

1012

1014

1016

1018
LiSSA N=800

0 2 4 6
Iteration

104

106

108

1010

1012

1014

1016

1018
LiSSA N=6400

0 2 4 6
Iteration

104

106

108

1010

1012

1014

1016

1018
LiSSA N=12800

1000 2000 3000 4000
Dimension d

500

600

700

800

900

Er
ro

r

DataInf N=200

1000 2000 3000 4000
Dimension d

600

700

800

900

1000

1100

DataInf N=800

1000 2000 3000 4000
Dimension d

600

800

1000

1200

1400

1600

DataInf N=6400

1000 2000 3000 4000
Dimension d

600

800

1000

1200

1400

1600

1800
DataInf N=12800

0 2 4 6
Series Length

104

106

108

1010

1012

1014

1016

1018

Lo
g

of
 E

rro
r

Neumann N=200

dim=512
dim=1024
dim=2048
dim=4096

0 2 4 6
Series Length

104

106

108

1010

1012

1014

1016

1018
Neumann N=800

0 2 4 6
Series Length

104

106

108

1010

1012

1014

1016

1018
Neumann N=6400

0 2 4 6
Series Length

104

106

108

1010

1012

1014

1016

1018
Neumann N=12800

0.04 0.02 0.00 0.02 0.04
Iteration

100

101

Lo
g

of
 E

rro
r

SOR N=200
dim=512
dim=1024
dim=2048
dim=4096

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=800

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=6400

0.04 0.02 0.00 0.02 0.04
Iteration

100

101
SOR N=12800

Figure 16: Convergence test of HYPERINF, LISSA, DATAINF, Neumann Series, and SOR
(ω = 1.5). We construct M = 1

N

∑N
i=1 sis

⊤
i + λI and apply various methods to approximate

the inverse Hessian-vector product M−1v, , where si ∈ Rd,v ∈ Rd are randomly generated, each
element is from the Uniform Distribution U(0, 1). Only HYPERINF can converge to a low error
rate in all cases. For other methods, they all diverge. For SOR, it has the nan issue.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

I DISCUSSION AND LIMITATIONS ON FIM AND GFIM APPROXIMATION IN
INFLUENCE FUNCTION COMPUTATION

I.1 LIMITATIONS OF FIM APPROXIMATION OF HESSIAN MATRIX

While the Fisher Information Matrix (FIM) have been widely applied to approximate the Hessian
matrix (Bartlett, 1953; Kwon et al., 2024), we recognize that some infeasible conditions required
by Equation 3 cannot be met in realistic LLM training cases, which might cause discrepancies and
undesirable downstream effects. Firstly, Equation 3 only stands when the model is nearly converged,
which can hardly be achieved when train LLMs; Besides, Equation 3 requires that the labels y are
drawn from the distribution p(y|x,θ). While the ground-truth labels are normally used as y in
influence function computation.
From the optimization point of view, using FIM to approximate second-order gradients or curvature
during training could lead to sub-optimal optimization outcomes, wuch as adverse distortion of the
gradient field (Kunstner et al., 2020). For more detailed and complete studies of FIM and hessian
matrices, we refer the readers to (Kunstner et al., 2020).

I.2 LIMITATIONS OF GFIM APPROXIMATION OF FIM

In Theorem 3.1, we make the idealized assumption that each column in the gradient matrix g is
independently and identically distributed (i.i.d.) following a distribution with zero-mean. However,
we demonstrate that this assumption may not be strictly valid in realistic cases of large langauge
model training.
According to 17a, we visualize both the fisher information matrix (FIM, vec(g)vec(g)T) and ex-
pended generalized fisher information matrix (GFIM, Ir ⊗ ggT) of gradient matrices from LoRA
finetuning on the MRPC dataset.
In 17b, we constructed a 16 × 1000 matrix by sampling each column from a standard guassian
distribution with zero-mean and one-variance independently and identically. We then plot the FIM
and expended GFIM matrices of the given matrix.
In practice, FIM and GFIM show some differences, especially with randomness and complex dy-
namics during LLM training. However, it does not impact the empirical performance of our method
according to the improvement from our comprehensive experiments. How to derive a more accu-
rate low-rank approximation of Hessian matrices within tractable computations is an important and
compelling research topic. We will leave it for future work.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

FIM

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

GFIM

0 2000 4000 6000 8000 10000 12000 14000 16000

0

2000

4000

6000

8000

10000

12000

14000

16000

Difference between GFIM and FIM

0.000100

0.000075

0.000050

0.000025

0.000000

0.000025

0.000050

0.000075

0.000100

(a) GFIM and FIM of Gradient Matrices from LoRA fine-tuning (r=16)

0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

FIM

0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

GFIM

0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

Difference between GFIM and FIM

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) GFIM and FIM of Matrices sampled from Standard Gaussian Distribution

Figure 17: Difference between GFIM and FIM.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

I.3 LINEAR INDEPENDENCE OF MATRIX COLUMNS

In realistic LLM training, it is hard to justify the i.i.d. assumption made in Theorem 3.1. However,
we provide the empirical evidence that each column in the gradient matrices are linear independent
with each other. Specifically, the rank of the gradient matrix should be equal to the number of
columns, i.e. the LoRA rank in low-rank fine-tuning.
We hereby compute the rank of each gradient matrix across all training data points from MRPC
dataset and present the distribution of matrices ranks in 18a and 18b. With r=8 and r=16, most of
(> 90%) gradient matrices are with full column ranks, which shows that Theorem 3.1 stands in real
low-rank tuning cases. In addition, we also compute the difference between GFIM and FIM in the
above same setting (r = 16 in this experiment).

1 2 3 4 5 6 7 8

Rank
0

50000

100000

150000

200000

250000

300000

350000

Fr
eq

ue
nc

y

Rank Distribution

(a) Rank Distribution of Gradient Matrices with r=8.

2 4 6 8 10 12 14 16

Rank
0

50000

100000

150000

200000

250000

300000

Fr
eq

ue
nc

y

Rank Distribution

(b) Rank Distribution of Gradient Matrices with r=16.

Figure 18: Rank distribution of gradient matrices on MRPC. More than 90% matrices are with full
column rank, which justifies our linear dependent aussumption in Theorem 3.1.

40

	Introduction
	Preliminaries
	HyperINF: Efficient and Accurate Data Influence Approximation via the Hyperpower Method
	Large-scale Hessian Approximation using Generalized Fisher Information
	Matrix Inverse Approximation with Schulz's Method

	Synthetic Convergence Test of Matrix Inverse Approximation
	Influence Function Approximation on Large-scale Models
	Mislabeled Data Detection
	Data Selection for LLM Finetuning
	Data Selection for VLM Pretraining

	Related Works
	Conclusion
	Derivations of Influence Function and its variants
	Influence Function
	Influence Function on Validation Loss
	Full derivation of DataInf

	Pseudo Code for HyperINF
	Convergence Analysis of Schulz's Method
	Details for Mislabeled Data Detection Task
	Analysis of Complexity and Time Costs.
	Correlation with Leave-One-Group-Out (LOGO) Scores.

	Data Selection for LLM Finetuning
	Data Selection for VLM Pretraining
	Details of VLM Architecture and Training Strategy
	Details of VLM Dataset
	Data Selection after Cross-Modal Alignment With Projector and LoRA of Language Backbone
	VLM Pretraining Before Cross-Modal Alignment

	Comparison between Matrix Inversion Algorithms
	Supplement Results of Convergence Test on Matrix Inversion
	Discussion and Limitations on FIM and GFIM approximation in Influence Function Computation
	Limitations of FIM Approximation of Hessian Matrix
	Limitations of GFIM Approximation of FIM
	Linear Independence of Matrix Columns

